资源类型

期刊论文 98

年份

2023 4

2022 5

2021 7

2020 13

2019 7

2018 3

2017 2

2016 3

2015 1

2014 3

2013 1

2012 2

2011 13

2010 4

2009 2

2008 5

2007 4

2006 2

2005 2

2004 3

展开 ︾

关键词

对地观测 3

三峡工程 2

信息处理 2

土石方 2

大地水准面 2

干旱 2

硗碛水电站 2

章动 2

线性规划 2

青藏高原腹地 2

2035 1

ANSYS 1

DX桩 1

EMD距离 1

GOCE 1

GRACE 1

MixMax模型 1

Nd-Fe-B磨削油泥 1

SINS/GNSS数据融合 1

展开 ︾

检索范围:

排序: 展示方式:

Liquefaction-induced damage evaluation of earth embankment and corresponding countermeasure

Linlin GU; Wei ZHENG; Wenxuan ZHU; Zhen WANG; Xianzhang LING; Feng ZHANG

《结构与土木工程前沿(英文)》 2022年 第16卷 第9期   页码 1183-1195 doi: 10.1007/s11709-022-0848-7

摘要: Liquefaction of sandy soils is a big threat to the stability and the safety of an earth embankment laid on saturated soils. A large number of liquefaction-induced damages on embankment due to different types of earthquakes have been reported worldwide. In this research, the dynamic behaviors of earth embankment and the reinforcement effects of grouting as remediation method, subjected to moderate earthquake EQ1 and strong earthquake EQ2, were numerically investigated. The seismic behaviors of ground composed of cohesionless sandy soil and cohesive clayey soil were uniformly described by the cyclic mobility (CM) model, which is capable of describing accurately the mechanical property of the soil due to monotonic and cyclic loadings by accounting for stress-induced anisotropy, over-consolidation, and soil structure. It is known from the numerical investigation that the embankment would experience destructive deformation, and that the collapse mode was closely related to the properties of input seismic motion because high intensities and long durations of an earthquake motion could lead to significant plastic deformation and prolonged soil liquefaction. Under the strong seismic loading of EQ2, a circular collapse surface, combined with huge settlement and lateral spread, occurred inside the liquefication zone and extended towards the embankment crest. In contrast, in moderate earthquake EQ1, upheaval was observed at each toe of the embankment, and instability occurred only in the liquefied ground. An anti-liquefaction remediation via grouting was determined to significantly reduce liquefaction-induced deformation (settlement, lateral spreading, and local uplift) and restrain the deep-seated circular sliding failure, even though the top sandy soil liquefied in both earthquakes. When the structure was subjected to EQ2 motion, local failure occurred on the embankment slope reinforced with grouting, and thus, an additional appropriate countermeasure should be implemented to further strengthen the slope. For both input motions, the surface deformation of the considered embankment decreased gradually as the thickness of reinforcement was increased, although the reinforcement effect was no longer significant once the thickness exceeded 6 m.

关键词: dynamic response     earth embankment     damage pattern     liquefaction     ground improvement    

Influence of soft rock-fill material as dam embankment with central bituminous concrete membrane

Peter TSCHERNUTTER

《结构与土木工程前沿(英文)》 2011年 第5卷 第1期   页码 63-70 doi: 10.1007/s11709-010-0016-3

摘要: This paper demonstrates the difficulties in determining the relevant material parameters for a valuation of the deformation behavior of the up- and downstream dam shell by means of an embankment dam of medium height. Laboratory as well as field tests on solid rock-fill material were performed before the beginning of construction. During the construction the properties of the available rock-fill changed from solid to soft materials. This gave rise to the necessity of adjusting the dam design of the downstream dam shoulder. Several times higher dam settlements as well as significant differential settlements between the up- and downstream dam shell were observed during construction and operation. Apart from this situation, the dam has been operated for nearly 20 years and the behavior of the water barrier has been very good.

关键词: embankment dam     bituminous concrete membrane     rock-fill material properties     deformation behavior    

Coupled solid-fluid FE-analysis of an embankment dam

Michael PERTL, Matthias HOFMANN, Guenter HOFSTETTER

《结构与土木工程前沿(英文)》 2011年 第5卷 第1期   页码 53-62 doi: 10.1007/s11709-010-0084-4

摘要: A coupled solid-fluid FE-model for partially saturated soils, characterized by modeling the soil as a three-phase material consisting of a deformable soil skeleton and the fluid phases water and air, is reviewed briefly. As a constitutive model for the soil skeleton, the well-known Barcelona Basic model (BBM) is employed, which is formulated in terms of net stress and matric suction. For the BBM, a computationally efficient return mapping algorithm is proposed, which only requires the solution of a scalar nonlinear equation at the integration point level. The coupled FE-model is applied to the coupled transient numerical simulation of the water flow and the deformations and stresses in an embankment dam.

关键词: multi-phase model     unsaturated soil model     Barcelona Basic model (BBM)     return mapping algorithm     embankment dam    

Continuous modeling of soil morphology —thermomechanical behavior of embankment dams

Bettina ALBERS, Krzysztof WILMANSKI

《结构与土木工程前沿(英文)》 2011年 第5卷 第1期   页码 11-23 doi: 10.1007/s11709-010-0081-7

摘要: Macroscopic modeling of soils is based on a number of properties that refer to the mesoscopic morphology. The most fundamental parameters of this art are: 1) coupling parameters between partial stresses of components and deformations of components, 2) porosities, 3) saturation, and 4) permeability and diffusivity, tortuosity. The main aim of this paper is to present in juxtaposition continuous one-, two-, and three-component models of geomaterials appearing in construction of embankment dams. In particular, the above mentioned features, especially saturation with water and seepage problems, modeling of fluidization yielding piping, and generalizations of the Darcy law and changes of porosity, are presented.

关键词: thermomechanical modeling     soil morphology     saturation     porosity    

Numerical simulation of compaction parameters for sand-filled embankment using large thickness sand filling

Wentao WANG, Chongzhi TU, Rong LUO

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 568-576 doi: 10.1007/s11709-017-0444-4

摘要: The study uses the finite element method to simulate a new technique of highway sand embankment filling in Jianghan Plain district, which can raise the thickness of sand-filled layer from 30 cm to 70 cm and can significantly shorten the construction period based on the guarantee of sand embankment construction quality. After simulating the three compacting proposals carried out on the field test, the study uses COMSOL software to research on the compacting effects of sand-filled layers in larger thicknesses by 22 ton vibratory roller alone, and then to investigate the steady compacting effect of 12 ton vibratory roller. The simulation results indicate that the sand-filled layer thickness of 70 cm is suitable for the new sand filling technique, and the sand-filled embankment project with tight construction period is suggested to choose the 12 ton vibration roller for steady compaction.

关键词: sand embankment     compaction in large thickness     numerical simulation     small size vibratory roller     steady compaction    

Effect of earth reinforcement, soil properties and wall properties on bridge MSE walls

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1209-1221 doi: 10.1007/s11709-021-0764-2

摘要: Mechanically stabilized earth (MSE) retaining walls are popular for highway bridge structures. They have precast concrete panels attached to earth reinforcement. The panels are designed to have some lateral movement. However, in some cases, excessive movement and even complete dislocation of the panels have been observed. In this study, 3-D numerical modeling involving an existing MSE wall was undertaken to investigate various wall parameters. The effects of pore pressure, soil cohesion, earth reinforcement type and length, breakage/slippage of reinforcement and concrete strength, were examined. Results showed that the wall movement is affected by soil pore pressure and reinforcement integrity and length, and unaffected by concrete strength. Soil cohesion has a minor effect, while the movement increased by 13–20 mm for flexible geogrid reinforced walls compared with the steel grid walls. The steel grid stresses were below yielding, while the geogrid experienced significant stresses without rupture. Geogrid reinforcement may be used taking account of slippage resistance and wall movement. If steel grid is used, non-cohesive soil is recommended to minimize corrosion. Proper soil drainage is important for control of pore pressure.

关键词: mechanically stabilized earth walls     precast concrete panels     backfill soil     finite element modeling     earth reinforcement    

Numerical analysis of nonlinear dynamic behavior of earth dams

Babak EBRAHIMIAN

《结构与土木工程前沿(英文)》 2011年 第5卷 第1期   页码 24-40 doi: 10.1007/s11709-010-0082-6

摘要: A numerical study is conducted to investigate the dynamic behavior of earth dams. The numerical investigation employs a fully nonlinear dynamic finite difference analysis incorporating a simple elastic perfectly plastic constitutive model to describe the stress-strain response of the soil and the Rayleigh damping to increase the level of hysteretic damping. The extended Masing rules are implemented into the constitutive model to explain more accurately the soil response under general cyclic loading. The soil stiffness and hysteretic damping change with loading history. The procedures for calibrating the constructed numerical model with centrifuge test data and also a real case history are explained. For the latter, the Long Valley (LV) earth dam subjected to the 1980 Mammoth Lake earthquake as a real case-history is analyzed and the obtained numerical results are compared with the real measurements at the site in both the time and frequency domains. Relatively good agreement is observed between computed and measured quantities. It seems that the Masing rules combined with a simple elasto-plastic model gives reasonable numerical predictions. Afterwards, a comprehensive parametric study is carried out to identify the effects of dam height, input motion characteristics, soil behavior, strength of the shell materials and dam reservoir condition on the dynamic response of earth dams. Three real earthquake records with different levels and peak acceleration values (PGAs) are used as input motions. The results show that the crest acceleration decreases when the dam height increases and no amplification is observed. Further, more inelastic behavior and more earthquake energy absorption are observed in higher dams.

关键词: earth dam     numerical     nonlinear response     dynamic analysis     earthquake     dam height    

Deviation correction strategy for the earth pressure balance shield based on shield–soil interactions

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0676-4

摘要: The control system presently used in shield posture rectification is based on driver experience, which is marginally reliable. The study of the related theory is flawed. Therefore, a decision-making approach for the deviation correction trajectory and posture rectification load for an earth pressure balance (EPB) shield is proposed. A calculation model of posture rectification load of an EPB shield is developed by considering the interactions among the cutter head, shield shell, and ground. The additional position change during the shield attitude correction is highlighted. The posture rectification loads and shield behaviors results can be solved by the proposed method. The influences of the stratum distribution (i.e., bedrock height in the upper-soft and lower-hard strata) on shield behaviors and posture rectification loads are analyzed. Results indicated that the increase of pitch angle in the upper-soft and lower-hard strata causes a sharp rise in vertical displacement. The bedrock height increases the magnitudes of the required posture rectification moments when hr/D > 0.5. For a tunnel with hr/D ≤ 0.5, the variation of hr/D has little effect on the posture rectification moments. Finally, the posture rectifying curves based on the theoretical model are compared with the target ones based on the double circular arc interpolation method. The required results can be obtained regardless of the soil–rock compound stratum distribution. The maximum rectification moment in the rock layer is almost 12.6 times that in the soil layer. Overall, this study provides a valuable reference for moment determination and the trajectory prediction of posture rectification in compound strata.

关键词: additional position change     deviation correction trajectory     earth pressure balance shield     mechanical model     posture rectification    

Embankment dam foundation analysis for the decrease of internal erosion likelihood

Marc SMITH

《结构与土木工程前沿(英文)》 2012年 第6卷 第4期   页码 431-436 doi: 10.1007/s11709-012-0183-5

摘要: A zoned embankment dam is founded on clay underlain by a sand deposit. Major seepage phenomena were noticed in the foundation downstream from the dam where the vertical seepage forces in the sand layer were expected to exceed the downward forces due to the overlying clay. Modern technologies were applied to delineate critical zones to help design optimal rehabilitation measures. A global electromagnetic survey was carried out to detect and map the main sources, pathways and exits of seepage. Based on these global findings, a more detailed analysis was then conducted to identify zones where thickness of the foundation clay is minimal, pore pressures in sand are higher and thus where the factor of safety against uplift is lower and internal erosion is more likely to occur. Clay thickness evaluation required the determination of land surface as well as clay-sand contact elevations. A laser airborne survey was performed to model the land surface elevation. Data concerning the clay-sand contact elevation came from the interpreted stratigraphy based on a series of boreholes and cone penetration tests. This data was combined in a geostatistical model along with the measured piezometric levels in the foundation. This resulted in a contour map showing factors of safety against uplift over the entire downstream area. The use of modern technologies, namely electromagnetic and laser surveys as well as geostatistical tools, was instrumental in defining the limits of an otherwise spread-out problem and to provide an optimal solution, in terms of costs and effectiveness, for the long-term stabilization of the foundation.

关键词: seepage detection     geostatistical analysis     dam monitoring     internal erosion     LIDAR survey    

Soil spatial variability impact on the behavior of a reinforced earth wall

Adam HAMROUNI, Daniel DIAS, Badreddine SBARTAI

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 518-531 doi: 10.1007/s11709-020-0611-x

摘要: This article presents the soil spatial variability effect on the performance of a reinforced earth wall. The serviceability limit state is considered in the analysis. Both cases of isotropic and anisotropic non-normal random fields are implemented for the soil properties. The Karhunen-Loève expansion method is used for the discretization of the random field. Numerical finite difference models are considered as deterministic models. The Monte Carlo simulation technique is used to obtain the deformation response variability of the reinforced soil retaining wall. The influences of the spatial variability response of the geotechnical system in terms of horizontal facing displacement is presented and discussed. The results obtained show that the spatial variability has an important influence on the facing horizontal displacement as well as on the failure probability.

关键词: reinforced earth wall     geosynthetic     random field     spatial variability     Monte Carlo simulation    

Upper bound solution to seismic active earth pressure of submerged backfill subjected to partial drainage

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1480-1493 doi: 10.1007/s11709-021-0776-y

摘要: In waterfront geotechnical engineering, seismic and drainage conditions must be considered in the design of retaining structures. This paper proposes a general analytical method to evaluate the seismic active earth pressure on a retaining wall with backfill subjected to partial steady seepage flow under seismic conditions. The method comprises the following steps: i) determination of the total head, ii) upper bound solution of seismic active earth thrust, and iii) deduction for the earth pressure distribution. The determination of total head h(x,z) relies on the Fourier series expansions, and the expressions of the seismic active earth thrust and pressure are derived by using the upper bound theorem. Parametric studies reveal that insufficient drainage and earthquakes are crucial factors that cause unfavorable earth pressure. The numerical results confirm the validity of the total head distribution. Comparisons indicate that the proposed method is consistent with other relevant existing methods in terms of predicting seismic active earth pressure. The method can be applied to the seismic design of waterfront retaining walls.

关键词: seismic active earth pressure     partial seepage flow     pore pressure     anisotropy     upper bound theorem    

Application of a weakly compressible smoothed particle hydrodynamics multi-phase model to non-cohesive embankment

Rasoul MEMARZADEH, Gholamabbas BARANI, Mahnaz GHAEINI-HESSAROEYEH

《结构与土木工程前沿(英文)》 2018年 第12卷 第3期   页码 412-424 doi: 10.1007/s11709-017-0432-8

摘要:

The subject of present study is the application of mesh free Lagrangian two-dimensional non-cohesive sediment transport model applied to a two-phase flow over an initially trapezoidal-shaped sediment embankment. The governing equations of the present model are the Navier-Stocks equations solved using Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) method. To simulate the movement of sediment particles, the model considers a powerful two-part technique; when the sediment phase has rigid behavior, only the force term due to shear stress in the Navier-Stokes equations is used for simulation of sediment particles’ movement. Otherwise, all the Navier-Stokes force terms are used for transport simulation of sediment particles. In the present model, the interactions between different phases are calculated automatically, even with considerable difference between the density and viscosity of phases. Validation of the model is performed using simulation of available laboratory experiments, and the comparison between computational results and experimental data shows that the model generally predicts well the flow propagation over movable beds, the induced sediment transport and bed changes, and temporal evolution of embankment breaching.

关键词: WCSPH method     non-cohesive sediment transport     rheological model     two-part technique     two-phase dam break    

Rare-earth separation based on the differences of ionic magnetic moment via quasi-liquid strategy

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1584-1594 doi: 10.1007/s11705-022-2189-4

摘要: The separation of rare earth elements is particularly difficult due to their similar physicochemical properties. Based on the tiny differences of ionic radius, solvent extraction has been developed as the “mass method” in industry with hundreds of stages, extremely intensive chemical consumption and large capital investments. The differences of the ionic magnetic moment among rare earths are greater than that of ionic radius. Herein, a novel method based on the large ionic magnetic moment differences of rare earth elements was proposed to promote the separation efficiency. Rare earths were firstly dissolved in the ionic liquid, then the ordering degree of them was improved with the Z-bond effect, and finally the magnetic moment differences between paramagnetic and diamagnetic rare earths in quasi-liquid system were enhanced. Taking the separation of Er/Y, Ho/Y and Er/Ho as examples, the results showed that Er(III) and Ho(III) containing ionic liquids had obvious magnetic response, while ionic liquids containing Y(III) had no response. The separation factors of Er/Y and Ho/Y were achieved at 9.0 and 28.82, respectively. Magnetic separation via quasi-liquid system strategy provides a possibility of the novel, green, and efficient method for rare earth separation.

关键词: rare earth element     different magnetic moment     magnetic separation     ionic liquid    

多尺度数字地球模型及其在地球科学研究中的应用

李伯衡

《中国工程科学》 2000年 第2卷 第4期   页码 12-15

摘要:

论述了虚拟地球的五个特征和建立数字地球模型的关键技术;在数字地球建设、研究和开发中,应密切从我国经济建设的需要出发,抓准、抓住制约我国经济建设的四个重大问题;并论述了数字高程模型应用的七大工程和研究领域。

关键词: 数字地球模型     虚拟地球     信息    

A simplified method for investigating the bending behavior of piles supporting embankments on soft ground

《结构与土木工程前沿(英文)》   页码 1021-1032 doi: 10.1007/s11709-023-0952-3

摘要: In recent years, concrete and reinforced concrete piles have been widely used to stabilize soft ground under embankments. Previous research has shown that bending failure, particularly during rapid filling on soft ground, is the critical failure mode for pile-supported embankments. Here, we propose an efficient two-stage method that combines a test-verified soil deformation mechanism and Poulos’ solution for pile–soil interaction to investigate the bending behavior of piles supporting embankments on soft ground. The results reveal that there are three possible bending failure scenarios for such piles: at the interface between the soft and firm ground layers, at mid-depths of the fan zone, and at the boundary of the soil deformation mechanism. The location of the bending failure depends on the position and relative stiffness of the given pile. Furthermore, the effect of embedding a pile into a firm ground layer on the bending behavior was investigated. When the embedded length of a pile exceeded a critical value, the bending moment at the interface between the soft and firm ground layers reached a limiting value. In addition, floating piles that are not embedded exhibit an overturning pattern of movement in the soft ground layer, and a potential failure is located in the upper part of these piles.

关键词: bending behavior     pile     embankment     soil−structure interaction     failure mode    

标题 作者 时间 类型 操作

Liquefaction-induced damage evaluation of earth embankment and corresponding countermeasure

Linlin GU; Wei ZHENG; Wenxuan ZHU; Zhen WANG; Xianzhang LING; Feng ZHANG

期刊论文

Influence of soft rock-fill material as dam embankment with central bituminous concrete membrane

Peter TSCHERNUTTER

期刊论文

Coupled solid-fluid FE-analysis of an embankment dam

Michael PERTL, Matthias HOFMANN, Guenter HOFSTETTER

期刊论文

Continuous modeling of soil morphology —thermomechanical behavior of embankment dams

Bettina ALBERS, Krzysztof WILMANSKI

期刊论文

Numerical simulation of compaction parameters for sand-filled embankment using large thickness sand filling

Wentao WANG, Chongzhi TU, Rong LUO

期刊论文

Effect of earth reinforcement, soil properties and wall properties on bridge MSE walls

期刊论文

Numerical analysis of nonlinear dynamic behavior of earth dams

Babak EBRAHIMIAN

期刊论文

Deviation correction strategy for the earth pressure balance shield based on shield–soil interactions

期刊论文

Embankment dam foundation analysis for the decrease of internal erosion likelihood

Marc SMITH

期刊论文

Soil spatial variability impact on the behavior of a reinforced earth wall

Adam HAMROUNI, Daniel DIAS, Badreddine SBARTAI

期刊论文

Upper bound solution to seismic active earth pressure of submerged backfill subjected to partial drainage

期刊论文

Application of a weakly compressible smoothed particle hydrodynamics multi-phase model to non-cohesive embankment

Rasoul MEMARZADEH, Gholamabbas BARANI, Mahnaz GHAEINI-HESSAROEYEH

期刊论文

Rare-earth separation based on the differences of ionic magnetic moment via quasi-liquid strategy

期刊论文

多尺度数字地球模型及其在地球科学研究中的应用

李伯衡

期刊论文

A simplified method for investigating the bending behavior of piles supporting embankments on soft ground

期刊论文